The life cycle energy consumption and emissions of asphalt pavement incorporating basic oxygen furnace slag by comparative study

14Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Basic Oxygen Furnace Slag (BOF), as alternatives for aggregate in asphalt pavement construction, is beneficial to the environment by reducing land occupation and resource consumption. However, the quantitative effects on energy consumption and emissions reduction remains poorly understood due to the unavailability of local life cycle inventory. Therefore, its LCI needs to be built by accounting for the properties of BOF aggregate in terms of high porosity and dust content in BOF, the rainy interference condition that reducing efficiency in production, and transportation distance. Here we investigated the life cycle energy consumption and global warming potential (CO2-eq emission) of asphalt pavement incorporating BOF aggregate by performing a case study with uncertainty analysis. Five scenarios were elaborated and performed in the case study. The results show that the energy required for BOF production is 0.024 MJ/kg, approximately half the energy required for crushed stone of 0.044 MJ/kg. The pavements with BOF can reduce up to 12% of emission compared to ordinary pavement. Considerably more negative impacts of rainy weather on energy consumption of BOF than natural crushed stone can be concluded. Monte Carlo simulation indicates that the order of magnitudes of the energy values were varied, from materials extraction as the maximum contributor to transportation. The benefits for BOF utilization are gradually offset by increased transport distances and the displacement ratios of fine crushed stones, due to the increase in fuel and resource consumption for mixing, construction, and transportation.

Cite

CITATION STYLE

APA

Xie, J., Wang, Z., Wang, F., Wu, S., Chen, Z., & Yang, C. (2021). The life cycle energy consumption and emissions of asphalt pavement incorporating basic oxygen furnace slag by comparative study. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084540

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free