Trichoderma Bio-Fertilizer Decreased C Mineralization in Aggregates on the Southern North China Plain

6Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Trichoderma bio-fertilizer is widely used to improve soil fertility and carbon (C) sequestration, but the mechanism for increasing C accumulation remains unclear. In this study, effects of Trichoderma bio-fertilizer on the mineralization of aggregate-associated organic C were investigated in a field experiment with five treatments (bio-fertilizer substitute 0 (CF), 10% (BF10), 20% (BF20), 30% (BF30) and 50% (BF50) chemical fertilizer nitrogen (N)). Aggregate fractions collected by the dry sieving method were used to determine mineralization dynamics of aggregate-associated organic C. The microbial community across aggregate fractions was detected by the phospholipid fatty acid (PLFA) method. The results indicated that Trichoderma bio-fertilizer increased organic C stock across aggregate fractions and bulk soil compared with CF. Cumulative mineralization of aggregate-associated organic C increased with the increasing bio-fertilizer application rate. However, the proportion of organic mineralized C was lower in the BF20 treatment except for <0.053 mm aggregate. Moreover, the PLFAs and fungal PLFA/bacterial PLFA first increased and then decreased with increasing bio-fertilizer application rates. Compared with CF, the increases of bacteria PLFA in >2 mm aggregate were 79.7%, 130.0%, 141.0% and 148.5% in BF10, BF20, BF30 and BF50, respectively. Similarly, the PLFAs in 0.25–2, 0.053–0.25 and <0.053 mm aggregates showed a similar trend to that in >2 mm aggregate. Bio-fertilizer increased the value of fungi PLFA/bacteria PLFA but decreased G+ PLFA/G− PLFA, and BF20 shared the greatest changes. Therefore, appropriate Trichoderma bio-fertilizer application was beneficial to improving soil micro-environment and minimizing risks of soil degradation.

Cite

CITATION STYLE

APA

Zhu, L., Cao, M., Sang, C., Li, T., Zhang, Y., Chang, Y., & Li, L. (2022). Trichoderma Bio-Fertilizer Decreased C Mineralization in Aggregates on the Southern North China Plain. Agriculture (Switzerland), 12(7). https://doi.org/10.3390/agriculture12071001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free