The double slit experiment was first conceived of by the English physician-physicist Thomas Young in 1801. It was the first demonstrative proof that light possesses a wave nature. In this experiment, light is made to pass through two very narrow slits that are spaced closely apart and a screen placed on the other side captures a pattern of alternating bright and dark stripes called fringes, formed as a result of the interference of ripples of light emanating from either slit. The relative positions and intensities of the fringes on the screen can be calculated by employing two assumptions that help simplify the geometry of the slit-screen arrangement. Firstly, the screen to slit distance is taken to be larger than the inter-slit distance (far field limit) and secondly, the inter-slit distance is taken to be larger than the wavelength of light. This conventional approach can account for the positions and intensities of the fringes located in the central portion of the screen with a fair degree of precision. It however, fails to account for those fringes located in the peripheral portions of the screen and also, is not applicable to the case wherein the screen to slit distance is made comparable to the inter-slit distance (near field limit). In this paper, the original analysis of Young's Experiment is reformulated using an analytically derived hyperbola equation, which is formed from the locus of the points of intersections of two uniformly expanding circular wavefronts of light that emanate from either slit source. Additionally, the shape of the screen used to capture the interference pattern is varied (linear, semicircular, semielliptical) and the relative positions of the fringes is calculated for each case. This new approach bears the distinctive advantage that it is applicable in both the far field and the near field scenarios, and since no assumptions are made beyond the Huygens-Fresnel principle, it is therefore, a much more generalized approach. For these reasons, the author suggests that the new analysis ought to be introduced into the Wave Optics chapter of the undergraduate Physics curriculum.
CITATION STYLE
Ivin Thomas, J. (2019). The Classical Double Slit Interference Experiment: A New Geometrical Approach. American Journal of Optics and Photonics, 7(1), 1. https://doi.org/10.11648/j.ajop.20190701.11
Mendeley helps you to discover research relevant for your work.