Inflammatory bowel disease (IBD) is a chronic, incurable disease involving the gastrointestinal tract. It is characterized by complex, unclear pathogenesis, increased prevalence worldwide, and a wide spectrum of extraintestinal manifestations and comorbidities. Recognition of IBD remains challenging and delays in disease diagnosis still poses a significant clinical problem as it negatively impacts disease outcome. The main diagnostic tool in IBD continues to be invasive endoscopy. We aimed to create an IBD machine learning prediction model based on routinely performed blood, urine, and fecal tests. Based on historical patients’ data (702 medical records: 319 records from 180 patients with ulcerative colitis (UC) and 383 records from 192 patients with Crohn’s disease (CD)), and using a few simple machine learning classificators, we optimized necessary hyperparameters in order to get reliable few-features prediction models separately for CD and UC. Most robust classificators belonging to the random forest family obtained 97% and 91% mean average precision for CD and UC, respectively. For comparison, the commonly used one-parameter approach based on the C-reactive protein (CRP) level demonstrated only 81% and 61% average precision for CD and UC, respectively. Results of our study suggest that machine learning prediction models based on basic blood, urine, and fecal markers may with high accuracy support the diagnosis of IBD. However, the test requires validation in a prospective cohort.
CITATION STYLE
Kraszewski, S., Szczurek, W., Szymczak, J., Reguła, M., & Neubauer, K. (2021). Machine learning prediction model for inflammatory bowel disease based on laboratory markers. Working model in a discovery cohort study. Journal of Clinical Medicine, 10(20). https://doi.org/10.3390/jcm10204745
Mendeley helps you to discover research relevant for your work.