Effective in-season crop nitrogen (N) status diagnosis is important for precision crop N management, and remote sensing using an unmanned aerial vehicle (UAV) is one efficient means of conducting crop N nutrient diagnosis. Here, field experiments were conducted with six N levels and six maize hybrids to determine the nitrogen nutrition index (NNI) and yield, and to diagnose the N status of the hybrids combined with multi-spectral data. The NNI threshold values varied with hybrids and years, ranging from 0.99 to 1.17 in 2018 and 0.60 to 0.71 in 2019. A proper agronomic optimal N rate (AONR) was constructed and confirmed based on the measured NNI and yield. The NNI (R2 = 0.64–0.79) and grain yield (R2 = 0.70–0.73) were predicted well across hybrids using a random forest model with spectral, structural, and textural data (UAV). The AONRs calculated using the predicted NNI and yield were significantly correlated with the measured NNI (R2 = 0.70 and 0.71 in 2018 and 2019, respectively) and yield (R2 = 0.68 and 0.54 in 2018 and 2019, respectively). It is concluded that data fusion can improve in-season N status diagnosis for different maize hybrids compared to using only spectral data.
CITATION STYLE
Liang, J., Ren, W., Liu, X., Zha, H., Wu, X., He, C., … Pan, Q. (2023). Improving Nitrogen Status Diagnosis and Recommendation of Maize Using UAV Remote Sensing Data. Agronomy, 13(8). https://doi.org/10.3390/agronomy13081994
Mendeley helps you to discover research relevant for your work.