The foundation of every digital system is based on hardware in which security, as a core service of many applications, should be deeply embedded. Unfortunately, the knowledge of system security and efficient hardware design is spread over different communities and, due to the complex and ever-evolving nature of hardware-based system security, state-of-the-art security is not always implemented in state-of-the-art hardware. However, automated security-aware hardware design seems to be a promising solution to bridge the gap between the different communities. In this work, we systematize state-of-the-art research with respect to security-aware Electronic Design Automation (EDA) and identify a modern security-aware EDA framework. As part of this work, we consider threats in the form of information flow, timing and power side channels, and fault injection, which are the fundamental building blocks of more complex hardware-based attacks. Based on the existing research, we provide important observations and research questions to guide future research in support of modern, holistic, and security-aware hardware design infrastructures.
CITATION STYLE
Feldtkeller, J., Sasdrich, P., & Güneysu, T. (2023). Challenges and Opportunities of Security-Aware EDA. ACM Transactions on Embedded Computing Systems, 22(3). https://doi.org/10.1145/3576199
Mendeley helps you to discover research relevant for your work.