Prediction of forest stand attributes using TerraSAR-X stereo imagery

20Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Consistent, detailed and up-to-date forest resource information is required for allocation of forestry activities and national and international reporting obligations. We evaluated the forest stand attribute prediction accuracy when radargrammetry was used to derive height information from TerraSAR-X stereo imagery. Radargrammetric elevations were normalized to heights above ground using an airborne laser scanning (ALS)-derived digital terrain model (DTM). Derived height metrics were used as predictors in the most similar neighbor (MSN) estimation approach. In total, 207 field measured plots were used in MSN estimation, and the obtained results were validated using 94 stands with an average area of 4.1 ha. The relative root mean square errors for Lorey's height, basal area, stem volume, and above-ground biomass were 6.7% (1.1 m), 12.0% (2.9 m2/ha), 16.3% (31.1 m3/ha), and 16.1% (15.6 t/ha). Although the prediction accuracies were promising, it should be noted that the predictions included bias. The respective biases were -4.6% (-0.7 m), -6.4% (-1.6 m2/ha), -9.3% (-17.8 m3/ha), and -9.5% (-9.1 t/ha). With detailed DTM, TerraSAR-X stereo radargrammetry-derived forest information appears to be suitable for providing consistent forest resource information over large areas.

Cite

CITATION STYLE

APA

Vastaranta, M., Niemi, M., Karjalainen, M., Peuhkurinen, J., Kankare, V., Hyyppä, J., & Holopainen, M. (2014). Prediction of forest stand attributes using TerraSAR-X stereo imagery. Remote Sensing, 6(4), 3227–3246. https://doi.org/10.3390/rs6043227

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free