The antigenic peptides processed by β-cells and presented through surface HLA class I molecules are poorly characterized. Each HLA variant (e.g., the most common being HLA-A2 and HLA-A3) carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring β-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of β-cells, we analyzed the HLA-A3–restricted peptides targeted by circulating CD8+ T cells. Several peptides were recognized by CD8+ T cells within a narrow frequency (1–50/106), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neoepitopes, generated either via peptide cis-splicing or mRNA splicing (e.g., secretogranin-5 [SCG5]–009). As reported for HLA-A2–restricted peptides, several epitopes originated from β-cell granule proteins (e.g., SCG3, SCG5, and urocortin-3). Similarly, H-2Kd–restricted CD8+ T cells recognizing the murine orthologs of SCG5, uro-cortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/scid recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.
CITATION STYLE
Azoury, M. E., Tarayrah, M., Afonso, G., Pais, A., Colli, M. L., Maillard, C., … Mallone, R. (2020). Peptides derived from insulin granule proteins are targeted by cd8+ t cells across mhc class i restrictions in humans and nod mice. Diabetes, 69(12), 2678–2690. https://doi.org/10.2337/db20-0013
Mendeley helps you to discover research relevant for your work.