Global population divergence of the sea star Hippasteria phrygiana corresponds to the onset of the last glacial period of the Pleistocene

17Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Genetic structure and connectivity of populations of the globally distributed and eurybathic sea star Hippasteria phrygiana (Parelius 1768) were studied in 165 individuals sampled from three oceanic regions: the North Pacific Ocean, the South Pacific Ocean (considered to include the adjacent regions of the Southern Ocean and the southern Indian Ocean) and the North Atlantic Ocean. A nuclear gene region (ATP synthase subunit α intron #5, ATPSα) and a mitochondrial gene region (cytochrome oxidase subunit I, COI) were amplified and sequenced. Significant heterogeneity was detected in an AMOVA analysis among the three sampled oceanic regions for COI, but not for ATPSα. Neither gene showed significant genetic heterogeneity within the North Atlantic, as assessed by ΦST values. Significant heterogeneity was detected for COI (but not ATPSα) in the North Pacific, but the converse was true in the South Pacific. Coalescent simulations suggested that the three regions have been diverging with little or no gene flow for the past 50-75,000 years, a time frame that corresponds to the onset of the last glacial period of the Pleistocene. A possible genetic signature of recent population expansion (or non-neutrality) was detected for each gene in the North Pacific, but not in the other two oceanic regions. © 2013 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Foltz, D. W., Fatland, S. D., Eléaume, M., Markello, K., Howell, K. L., Neill, K., & Mah, C. L. (2013). Global population divergence of the sea star Hippasteria phrygiana corresponds to the onset of the last glacial period of the Pleistocene. Marine Biology, 160(5), 1285–1296. https://doi.org/10.1007/s00227-013-2180-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free