Strained bilayer graphene, emergent energy scales, and moiré gravity

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Twisted bilayer graphene is a rich condensed matter system, which allows one to tune energy scales and electronic correlations. The low-energy physics of the resulting moiré structure can be mathematically described in terms of a diffeomorphism in a continuum formulation. We stress that twisting is just one example of moiré diffeomorphisms. Another particularly simple and experimentally relevant transformation is a homogeneous isomorphic strain of one of the layers, which gives rise to a nearly identical moiré pattern (rotated by 90° relative to the twisted structure) and potentially flat bands. We further observe that low-energy physics of the strained bilayer graphene takes the form of a theory of fermions tunneling between two curved space-times. Conformal transformation of the metrics results in emergent "moiré energy scales,"which can be tuned to be much lower than those in the native theory. This observation generalizes to an arbitrary space-time dimension with or without an underlying lattice or periodicity and suggests a family of toy models of "moiré gravity"with low emergent energy scales. Motivated by these analogies, we present an explicit toy construction of moiré gravity, where the effective cosmological constant can be made arbitrarily small. We speculate about possible relevance of this scenario to the fundamental vacuum catastrophe in cosmology.

Cite

CITATION STYLE

APA

Parhizkar, A., & Galitski, V. (2022). Strained bilayer graphene, emergent energy scales, and moiré gravity. Physical Review Research, 4(2). https://doi.org/10.1103/PhysRevResearch.4.L022027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free