Group factor analysis for alzheimer's disease

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

For any neuroimaging study in an institute, brain images are normally acquired from healthy controls and patients using a single track of protocol. Traditionally, the factor analysis procedure analyzes image data for healthy controls and patients either together or separately. The former unifies the factor pattern across subjects and the latter deals with measurement errors individually. This paper proposes a group factor analysis model for neuroimaging applications by assigning separate factor patterns to control and patient groups. The clinical diagnosis information is used for categorizing subjects into groups in the analysis procedure. The proposed method allows different groups of subjects to share a common covariance matrix of measurement errors. The empirical results show that the proposed method provides more reasonable factor scores and patterns and is more suitable for medical research based on image data as compared with the conventional factor analysis model. © 2013 Wei-Chen Cheng et al.

Cite

CITATION STYLE

APA

Cheng, W. C., Cheng, P. E., & Liou, M. (2013). Group factor analysis for alzheimer’s disease. Computational and Mathematical Methods in Medicine, 2013. https://doi.org/10.1155/2013/428385

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free