Building virtual ecosystems from artificial chemistry

12Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper adopts an interdisciplinary view of the significant elements of ecosystems and the methods by which these might be simulated to explore theoretical issues of relevance to Artificial Life and Ecology. Artificial Life has largely been concerned with evolutionary ecosystems of agents in trivial environments. Ecology commonly produces models of specific habitats and organism populations unsuited to general exploration of theoretical issues. We propose that limitations of the simulations in these disciplines can be overcome by simulating ecosystems from the level of artificial chemistry. We demonstrate the approach's feasibility by describing several virtual organisms represented at this level. The organisms automatically adopt trophic levels, generate energy from chemical bonds and transform material elements in the process. Virtual organisms may interact with one another and their abiotic environment using the same chemistry. Biosynthesis and decay may also be simulated through this mechanism. © Springer-Verlag Berlin Heidelberg 2007.

Cite

CITATION STYLE

APA

Dorin, A., & Korb, K. B. (2007). Building virtual ecosystems from artificial chemistry. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4648 LNAI, pp. 103–112). Springer Verlag. https://doi.org/10.1007/978-3-540-74913-4_11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free