Simultaneous Determination Method of Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids by LC-MS/MS System

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Epoxyeicosatrienoic acids (EETs) are produced primarily by CYPs from arachidonic acid (AA) and then further metabolized to the corresponding dihydroxyeicosatrienoic acids (DHETs). EETs play important roles in physiological processes such as regulating vasodilation and inflammation. Thus, the drug inhibition of CYP-mediated AA metabolism could reduce production of EETs, potentially resulting in adverse cardiovascular events. The aim of this study was to develop a simple method to simultaneously determine the concentrations of both EETs and DHETs using a conventional LC-MS/MS system to evaluate drug-endogenous substance interactions, including eicosanoids. Eight eicosanoids (5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET, 5,6-DHET, 8,9-DHET, 11,12-DHET, and 14,15-DHET) were detected with their corresponding deuteriumlabeled eicosanoids as internal standards. The samples were purified by solid-phase extraction columns. Liquid chromatographic separation was achieved on a C18 column. DHETs and EETs were eluted at 4-7 and 18-26 min, respectively. The weighted (1/y2) calibration curves were linear over a range of 5-2000 nmol/L for EETs and 2-2000 nmol/L for DHETs. In quality control (QC) samples, the recoveries of eicosanoids were 95.2-118%. The intra-day precisions were within 6% in all three QC samples, and the inter-day precisions were <16.7% at 50 nmol/L, <8.6% at 200 nmol/L, and <9.8% at 1000 nmol/L. We have applied this method for the determination of the eicosanoid levels in samples from incubation studies of AA by using human recombinant CYP enzyme (rCYP), and confirmed that the method has sensitivity sufficient for assessment of rCYP incubation study.

Cite

CITATION STYLE

APA

Mukai, Y., Toda, T., Takeuchi, S., Senda, A., Yamashita, M., Eliasson, E., … Inotsume, N. (2015). Simultaneous Determination Method of Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids by LC-MS/MS System. Biological and Pharmaceutical Bulletin, 38(10), 1673–1679. https://doi.org/10.1248/bpb.b15-00480

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free