The interactive effects of pH, l-malate, and glucose-6-phosphate on guard-cell phosphoenolpyruvate carboxylase

17Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The interactive effects of pH, L-malate, and glucose-6-phosphate (Glc-6-P) on the Vmax and Km of guard-cell (GC) phosphoenolpyruvate (PEP) carboxylase (PEPC) of Vicia faba L were determined. Leaves of three different physiological states (closed stomata, opening stomata, open stomata) were rapidly frozen and freeze dried. GC pairs dissected from the leaves were individually extracted and individually assayed for the kinetic properties of PEPC. Vmax was 6 to 9 pmol GC pair-1 h-1 and was apparently unaffected to a biologically significant extent by the investigated physiological states of the leaf, pH (7.0 or 8.5), L-malate (0, 5, or 15 mM), and Glc-6-P (0, 0.1, 0.5, 0.7, or 5 mM). As reported earlier, the Km(PEP·Mg) was about 0.2 mM (pH 8.5) or 0.7 mM (pH 7.0), which can be compared with a GC [PEP] of 0.27 mM. In the study reported here, we determined that the in situ GC [Glc-6-P] equals approximately 0.6 to 1.2 mM. When 0.5 mM Glc-6-P was included in the GC PEPC assay mixture, the Am(PEP·Mg) decreased to about 0.1 mM (pH 8.5) or 0.2 mM (pH 7.0). Thus, Glc-6-P at endogenous concentrations would seem both to activate the enzyme and to diminish the dramatic effect of pH on Km(PEP·Mg). Under assay conditions, L-malate is an inhibitor of GC PEPC. In planta, cytoplasmic [L-malate] is approximately 8 mM. Inclusion of 5 mM L-malate increased the Km(PEP·Mg) to about 3.6 mM (pH 7.0) or 0.4 mM (pH 8.5). Glc-6-P (0.5 mM) was sufficient to relieve L-malate inhibition completely at pH 8.5. In contrast, approximately 5 mM Glc-6-P was required to relieve L-malate inhibition at pH 7.0. No biologically significant effect of physiological state of the tissue on GC PEPC Km(PEP·Mg) (regardless of the presence of effectors) was observed. Together, these results are consistent with a model that GC PEPC is regulated by its cytosolic chemical environment and not by posttranslational modification that is detectable at physiological levels of effectors. It is important to note, however, that we did not determine the phosphorylation status of GC PEPC directly or indirectly (by comparison of the concentration of L-malate that causes a 50% inhibition of GC PEPC).

Cite

CITATION STYLE

APA

Tarczynski, M. C., & Outlaw, W. H. (1993). The interactive effects of pH, l-malate, and glucose-6-phosphate on guard-cell phosphoenolpyruvate carboxylase. Plant Physiology, 103(4), 1189–1194. https://doi.org/10.1104/pp.103.4.1189

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free