Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth

411Citations
Citations of this article
597Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chitosan is largely known for its activity against a wide range of microorganisms, in which the most acceptable antimicrobial mechanism is found to include the presence of charged groups in the polymer backbone and their ionic interactions with bacteria wall constituents. This interaction suggests the occurrence of a hydrolysis of the peptidoglycans in the microorganism wall, provoking the leakage of intracellular electrolytes, leading the microorganism to death. The charges present in chitosan chains are generated by protonation of amino groups when in acid medium or they may be introduced via structural modification. This latter can be achieved by a methylation reaction resulting in a quaternized derivative with a higher polymeric charge density. Since the charges in this derivative are permanents, it is expected a most efficient antimicrobial activity. Hence, in the present study, commercial chitosan underwent quaternization processes and both (mother polymer and derivative) were evaluated, in gel form, against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), as model bacteria. The results, as acquired from turbidity measurements, differ between materials with an expressive reduction on the Gram-positive microorganism (S. aureus) growth, while E. coli (Gram-negative) strain was less sensitive to both polymers. Additionally, the antibacterial effectiveness of chitosan was strongly dependent on the concentration, what is discussed in terms of spatial polymer conformation.

Cite

CITATION STYLE

APA

Goy, R. C., Morais, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth. Revista Brasileira de Farmacognosia, 26(1), 122–127. https://doi.org/10.1016/j.bjp.2015.09.010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free