Patients with ischemic hearts who have refused coronary vascular reconstruction may exhibit dynamic myocardial remodeling and cardiac dysfunction. In the present study, the role of miRNA-1 and its association with the ubiquitin-proteasome system (UPS) in regulating myocardial remodeling was investigated. A myocardial infarction (MI) model was constructed and the hearts were treated with miRNA-1 antagomir, miRNA-1 lentiviral vectors and the UPS proteasome blocker bortezomib. The expression levels of miRNA-1 were evaluated using reverse transcription PCR and the abundance of the ubiquitin-proteasome protein and caspase-3 were evaluated via western blot analysis. Furthermore, the collagen volume fraction was calculated using Masson's trichrome staining, and the apoptosis index was detected via terminal deoxynucleotidyl transferase dUTP-biotin nick end labeling staining. Transforming growth factor (TGF)-β expression was assessed via immunohisto-chemical staining. Echocardiographic characteristics and myocardial infarct size were analyzed. miRNA-1 expression levels were found to be increased following MI. miRNA-1 antagomir administration clearly inhibited miRNA-1 expression, whereas the miRNA-1 lentiviral vector exerted the opposite effect. The levels of 19s proteasome, 20S proteasome and ubiquitin ligase E3 were decreased in the miRNA-1 antagomir group, but were significantly increased in the miRNA-1 lentiviral group; however, only 20S proteasome expression was decreased in the bortezomib group. Collagen hyperplasia and TGF-β expression were decreased in both the miRNA-1 antagomir and bortezomib groups, although the effects of the miRNA-1 antagomir were more noticeable. The miRNA-1 antagomir and the UPS proteasome blocker both alleviated the ultrastructural impairments, demonstrated by a decreased left ventricular (LV) end-diastolic diameter and LV mass, but the miRNA-1 antagomir was also able to increase LV ejection fraction and LV fractional shortening. miRNA-1 regulated UPS-associated mRNA expression and affected the majority of the UPS components in the myocardium, thereby leading to increased myocardial cell apoptosis, myocardial fibrosis and remodeling. The miRNA‑1 antagomir exerted a more prominent cardioprotective effect compared with the UPS proteasome blocker bortezomib.
CITATION STYLE
Wei, L., Zhang, Y., Qi, X., Sun, X., Li, Y., & Xu, Y. (2019). Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction. International Journal of Molecular Medicine, 44(5), 1899–1907. https://doi.org/10.3892/ijmm.2019.4330
Mendeley helps you to discover research relevant for your work.