DFT Study Adsorption of Hydroxychloroquine for Treatment COVID-19 by SiC Nanotube and Al, Si Doping on Carbon Nanotube Surface: A Drug Delivery Simulation

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Abstract: This study aims to investigate the capability of aluminum-doped nanotubes, silicon-doped nanotubes, and silicon carbide nanotubes to adsorb Hydroxychloroquine (C18H26ClN3O) molecular using DFT theory at 6-31G** basis set and M062x level of theory. The calculated results indicate that the distance between nanotubes and the drug from the N site is lower than from all other locations sites for all investigated nanotubes, and adsorption is more favorable, especially for Al-CNT nanotube. The adsorption energy, hardness, softness, and fermi energy results reveal that the interaction of Hydroxychloroquine with Al-CNT is stronger than Si-CNT and SiC-NT. The results clarify that Al-CNT is a promising adsorbent for this drug as Eads of Hydroxychloroquine/Al-CNT complexes are –45.07, –15.78, –45.15, –93.53 kcal/mol in the gas phase and –43.02, –14.43, –43.86, –88.97 kcal/mol for aqueous solution. The energy gap of the Hydroxychloroquine/Al-CNT system is in the range of 2.32 to 3.84 eV.

Cite

CITATION STYLE

APA

Al-Sawaff, Z. H., Dalgic, S. S., Kandemirli, F., Monajjemi, M., & Mollaamin, F. (2022). DFT Study Adsorption of Hydroxychloroquine for Treatment COVID-19 by SiC Nanotube and Al, Si Doping on Carbon Nanotube Surface: A Drug Delivery Simulation. Russian Journal of Physical Chemistry A, 96(13), 2953–2966. https://doi.org/10.1134/S003602442213026X

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free