This paper examines effective and environmentally friendly materials intended for noise insulation and soundproofing applications, starting with materials that have gained significant attention within last years. Foam-formed materials based on cellulose fibers have emerged as a promising solution. The aim of this study was to obtain a set of foam-formed, porous, lightweight materials based on cellulose fibers from a resinous slurry pulp source, and to investigate the impact of surfactant percentage of the foam mixtures on their noise insulation characterisitcs. The basic foam-forming technique was used for sample assembly, with three percentages of sodium dodecyl sulphate (as anionic surfactant) related to fiber weight, and a standardised sound transmission loss tube procedure was used to evaluate noise insulation performance. Results were obtained as observations of internal structural configurations and material characteristics, and as measurements of sound absorption/reflection, sound transmission loss, and surface acoustic impedance. Based on the findings within this study, the conclusions highlight the strong potential of these cellulosic foams to replace widely used synthetic materials, at least into the area of practical noise insulation applications.
CITATION STYLE
Seciureanu, M., Nastac, S. M., Guiman, M. V., & Nechita, P. (2023). Cellulose Fibers-Based Porous Lightweight Foams for Noise Insulation. Polymers, 15(18). https://doi.org/10.3390/polym15183796
Mendeley helps you to discover research relevant for your work.