Rainfall extremes often result in the occurrence of flood events with associated loss of life and infrastructure in Malawi. However, an understanding of the frequency of occurrence of such extreme events either for design or disaster planning purposes is often limited by data availability at the desired temporal and spatial scales. Regionalisation, which involves "trading time for space" by pooling together observations for stations with similar behavior, is an alternative approach for more accurate determination of extreme events even at ungauged areas or sites with short records. In this study, regional frequency analysis of rainfall extremes in Southern Malawi, large parts of which are flood prone, was undertaken. Observed 1-, 3-, 5- and 7-day annual maximum rainfall series for the period 1978-2007 at 23 selected rainfall stations in Southern Malawi were analysed. Cluster analysis using scaled at-site characteristics was used to determine homogeneous rainfall regions. L-moments were applied to derive regional index rainfall quantiles. The procedure also validated the three rainfall regions identified through homogeneity and heterogeneity tests based on Monte Carlo simulations with regional average L-moment ratios fitted to the Kappa distribution. Based on assessments of the accuracy of the derived index rainfall quantiles, it was concluded that the performance of this regional approach was satisfactory when validated for sites not included in the sample data. The study provides an estimate of the regional characteristics of rainfall extremes that can be useful in among others flood mitigation and engineering design. © 2011 The Author(s).
CITATION STYLE
Ngongondo, C. S., Xu, C. Y., Tallaksen, L. M., Alemaw, B., & Chirwa, T. (2011). Regional frequency analysis of rainfall extremes in Southern Malawi using the index rainfall and L-moments approaches. Stochastic Environmental Research and Risk Assessment, 25(7), 939–955. https://doi.org/10.1007/s00477-011-0480-x
Mendeley helps you to discover research relevant for your work.