Atrial fibrillation (AF) is the commonest arrhythmia in humans and is associated with marked reduction in quality of life and an elevated thromboembolic risk. Paroxysmal, persistent, and permanent forms of AF have been recognized. Whilst antiarrhythmic drugs are considered as first-line therapy, the role of catheter ablation is increasing due to its superior efficacy in terms of quality of life and reduction in AF burden. The central paradigm for catheter ablation of AF is that triggers for AF are located near and within the pulmonary veins (PVs), and electrical isolation of the PVs from the left atrium forms the cornerstone of most catheter ablation strategies. Whilst paroxysmal form is generally trigger dependent, persistent and permanent forms are associated with variable interaction between triggers and "substrate" comprised of atrial and PV electrical and structural remodeling. Nevertheless, isolation of the PVs still forms a critical component of catheter ablation strategies, regardless of AF type. Procedural efficacy, however, is limited by PV conduction recovery. This is likely due to deficiencies in ablation tools or limitations of intraprocedural assessment of lesion efficacy. Careful attention to surrogates of tissue heating, such as impedance decrease and electrogram morphology changes, along with advances in catheter technology like contact force catheters may improve rates of durable PV isolation and single-procedural success. This review discusses the mechanism of paroxysmal AF with particular focus on the role of the PVs in AF initiation and PV isolation in the management of AF.
CITATION STYLE
Michaud, G., & Kumar, S. (2016). Pulmonary vein isolation in the treatment of atrial fibrillation. Research Reports in Clinical Cardiology, 47. https://doi.org/10.2147/rrcc.s56549
Mendeley helps you to discover research relevant for your work.