The Effects of Dexmedetomidine on Abdominal Aortic Occlusion-Induced Ovarian Injury via Oxidative Stress and Apoptosis

1Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Ischemia/reperfusion (I/R) induced ovarian damage is caused by various diseases such as ovarian torsion, ovarian transplantation, cardiovascular surgery, sepsis, or intra-abdominal surgery. I/R-related oxidative damage can impair ovarian functions, from oocyte maturation to fertilization. This study investigated the effects of dexmedetomidine (DEX), which has been shown to exhibit antiapoptotic, anti-inflammatory, and antioxidant effects, on ovarian I/R injury. We designed four study groups: group 1 (n = 6): control group; group 2 (n = 6): only DEX group; group 3 (n = 6): I/R group; group 4 (n = 6): I/R + DEX group. Then, ovarian samples were taken and examined histologically and immunohistochemically, and tissue malondialdehyde (MDA) and glutathione (GSH) levels were measured. In the I/R group MDA levels, caspase-3, NF-κB/p65, 8-OHdG positivity, and follicular degeneration, edema, and inflammation were increased compared to the control group (p = 0.000). In addition, GSH levels were significantly decreased in the I/R group compared to the control group (p = 0.000). On the other hand, in the I/R + DEX treatment group MDA levels, caspase-3, NF-κB/p65, 8-OHdG positivity, follicular degeneration, edema, and inflammation findings were decreased than in the I/R group (p = 0.000, p = 0.005, p = 0.005, p = 0.001, p = 0.005, respectively). However, GSH levels increased significantly in the I/R + DEX treatment group compared to the I/R group (p = 0.000). DEX protects against ovarian I/R injury through antioxidation and by suppressing inflammation and apoptosis.

Cite

CITATION STYLE

APA

Mercantepe, F., Tumkaya, L., Mercantepe, T., Akyildiz, K., Ciftel, S., & Yilmaz, A. (2023). The Effects of Dexmedetomidine on Abdominal Aortic Occlusion-Induced Ovarian Injury via Oxidative Stress and Apoptosis. Cells Tissues Organs, 212(6), 554–566. https://doi.org/10.1159/000531613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free