Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy

19Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in 15N, 13C, or 2H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched 15N or 15N/13C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the 15N- and 15N/13C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including 1H-15N and 1H-13C HSQCs, 15N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy. © 2011 The Author(s).

Cite

CITATION STYLE

APA

Sastry, M., Xu, L., Georgiev, I. S., Bewley, C. A., Nabel, G. J., & Kwong, P. D. (2011). Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy. Journal of Biomolecular NMR, 50(3), 197–207. https://doi.org/10.1007/s10858-011-9506-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free