Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization

  • Dhabal S
  • Venkateswaran P
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present a novel hybrid algorithm based on particle swarm optimization (PSO) and simulated annealing (SA) for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.

Cite

CITATION STYLE

APA

Dhabal, S., & Venkateswaran, P. (2014). Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization. Journal of Optimization, 2014, 1–10. https://doi.org/10.1155/2014/239721

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free