Hepatitis C virus (HCV) induces autophagosome formation in infected human hepatocytes. We have previously reported that HCV exploits autophagic machinery in favor of virus growth and survival in host cells (S. Shrivastava et al., Hepatology 53: 406–414, 2011); however, the mechanisms for autophagy induction is poorly understood. In the present study, we observed that HCV infection transcriptionally upregulates Beclin1, which forms complex with Vps34, the class III phosphatidylinositol 3-kinase, as a first step for autophagy initiation. Although Bcl-2 has an anti-autophagy effect by its association with Beclin1 in nutrient-deprived cells, our studies revealed that HCV-mediated autophagy occurs independent of Beclin1–Bcl-2 dissociation. Mammalian target of rapamycin (mTOR) is a positive regulator of cell growth and is recognized as an inhibitor of autophagy induction. Our results demonstrated that HCV infection enhances phospho-mTOR expression and its downstream target 4EBP1 activation, suggesting that mTOR is not a negative regulator of HCV-induced autophagy. On the other hand, HCV infection in autophagy-impaired cells reduced phospho-mTOR, mTOR, and phospho-4EBP1 expression. Together, these results suggested that HCV induces autophagy by upregulating Beclin1 and activates mTOR signaling pathway, which in turn may promote hepatocyte growth.
CITATION STYLE
Shrivastava, S., Bhanja Chowdhury, J., Steele, R., Ray, R., & Ray, R. B. (2012). Hepatitis C Virus Upregulates Beclin1 for Induction of Autophagy and Activates mTOR Signaling. Journal of Virology, 86(16), 8705–8712. https://doi.org/10.1128/jvi.00616-12
Mendeley helps you to discover research relevant for your work.