New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide

172Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nitric oxide produced by activated macrophages plays a key role as one of the immune system's weapons against pathogens. Because the lifetime of nitric oxide is short in aerobic conditions, whereas in anaerobic conditions the cytotoxic effects of nitric oxide are greatly increased as in the infection/inflammation processes, it is important to establish which systems are able to detoxify nitric oxide under anaerobic conditions. In the present work a new set of Escherichia coli K-12 genes conferring anaerobic resistance to nitric oxide is presented, namely the gene product of YtfE and a potential transcriptional regulator of the helix-turn-helix LysR-type (YidZ). The crucial role of flavohemoglobin for anaerobic nitric oxide protection is also demonstrated. Furthermore, nitric oxide is shown to cause a significant alteration of the global E. coli gene transcription profile that includes the increase of the transcript level of genes encoding for detoxification enzymes, iron-sulfur cluster assembly systems, DNA-repairing enzymes, and stress response regulators.

Cite

CITATION STYLE

APA

Justino, M. C., Vicente, J. B., Teixeira, M., & Saraiva, L. M. (2005). New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. Journal of Biological Chemistry, 280(4), 2636–2643. https://doi.org/10.1074/jbc.M411070200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free