The heat and mass transfer characteristics on unsteady squeezing flow of magnetohydrodynamic (MHD) Casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption effects is investigated in this study. The influences of viscous and joule dissipation are also examined. The flow is caused by squeezing between two parallel plates embedded in a porous medium. The highly coupled nonlinear partial differential equations are reduced to a system of nonlinear ordinary differential equations via similarity transformations. The transformed equations are solved using numerical scheme of Keller-box method. The accuracy of present method is validated through comparison of skin friction coefficient, Nusselt and Sherwood numbers with previously published results. Comparisons reveal that good agreements are achieved. Graphical results for velocity, temperature and nanoparticles concentration are analysed with various parameters. Findings demonstrate that the fluid velocity and temperature enhance when the plates move closer. Besides, increase in Hartmann number suppressed the fluid velocity and concentration due to the presence of strong Lorentz forces. The Brownian motion boosts the fluid temperature and concentration. Moreover, nanoparticles concentration is found to be higher in constructive chemical reaction and opposite effect is observed in destructive chemical reaction.
CITATION STYLE
Noor, N. A. M., Shafie, S., & Admon, M. A. (2020). MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 68(2), 94–111. https://doi.org/10.37934/ARFMTS.68.2.94111
Mendeley helps you to discover research relevant for your work.