Analysis and correction of biases in cross-relaxation MRI due to biexponential longitudinal relaxation

31Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose Cross-relaxation imaging (CRI) is a family of quantitative magnetization transfer techniques that utilize images obtained with off-resonance saturation and longitudinal relaxation rate (R1) maps reconstructed by the variable flip angle (VFA) method. It was demonstrated recently that a significant bias in an apparent VFA R1 estimation occurs in macromolecule-rich tissues due to magnetization transfer (MT)-induced biexponential behavior of longitudinal relaxation of water protons. The purpose of this article is to characterize theoretically and experimentally the resulting bias in the CRI maps and propose methods to correct it. Theory The modified CRI algorithm is proposed, which corrects for such biases and yields accurate parametric bound pool fraction f, cross-relaxation rate k, and R 1 maps. Additionally, an analytical correction procedure is introduced to recalculate previously obtained parameter values. Results The systematic errors due to unaccounted MT-induced biexponential relaxation can be characterized as an overestimation of R1, f, and k, with a relative bias comparable with the magnitude of f. The phantom and human in vivo experiments demonstrate that both proposed modified CRI and analytical correction approaches significantly improve the accuracy of the CRI method. Conclusion The accuracy of the CRI method can be considerably improved by taking into account the contribution of MT-induced biexponential longitudinal relaxation into variable flip angle R1 measurements. © 2013 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

Mossahebi, P., Yarnykh, V. L., & Samsonov, A. (2014). Analysis and correction of biases in cross-relaxation MRI due to biexponential longitudinal relaxation. Magnetic Resonance in Medicine, 71(2), 830–838. https://doi.org/10.1002/mrm.24677

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free