The effects of hypoxia and fatigue on skeletal muscle electromechanical delay

4Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

New Findings: What is the central question of this study? What are the mechanisms underlying impaired muscular endurance and accelerated fatigue during acute hypoxia? What is the main finding and its importance? Hypoxia had no effect on the electrochemical latency associated with muscle contraction elicited by supramaximal electrical motor nerve stimulation in vivo. This provides greater insight into the effects of hypoxia and fatigue on the mechanisms of muscle contraction in vivo. Abstract: Acute hypoxia impairs muscle endurance and accelerates fatigue, but the underlying mechanisms, including any effects on muscle electrical activation, are incompletely understood. Electromyographic, mechanomyographic and force signals, elicited by common fibular nerve stimulation, were used to determine electromechanical delay (EMDTOT) of the tibialis anterior muscle in normoxia and hypoxia ((Formula presented.) 0.125) at rest and following fatiguing ankle dorsiflexor exercise (60% maximum voluntary contraction, 5 s on, 3 s off) in 12 healthy participants (mean (SD) age 27.4 (9.0) years). EMDTOT was determined from electromyographic to force signal onset, electrical activation latency from electromyographic to mechanomyographic (EMDE-M) and mechanical latency from mechanomyographic to force (EMDM-F). Twitch force fell significantly following fatiguing exercise in normoxia (46.8 (14.7) vs. 20.6 (14.3) N, P = 0.0002) and hypoxia (52.9 (15.4) vs. 28.8 (15.2) N, P = 0.0006). No effect of hypoxia on twitch force at rest was observed. Fatiguing exercise resulted in significant increases in mean (SD) EMDTOT in normoxia (Δ 4.7 (4.57) ms P = 0.0152) and hypoxia (Δ 3.7 (4.06) ms P = 0.0384) resulting from increased mean (SD) EMDM-F only (normoxia Δ 4.1 (4.1) ms P = 0.0391, hypoxia Δ 3.4 (3.6) ms P = 0.0303). Mean (SD) EMDE-M remained unchanged during normoxic (Δ 0.6 (1.08) ms) and hypoxic (Δ 0.25 (0.75) ms) fatiguing exercise. No differences in percentage change from baseline for twitch force, EMDTOT, EMDE-M and EMDM-F between normoxic and hypoxic fatigue conditions were observed. Hypoxia in isolation or in combination with fatigue had no effect on the electrochemical latency associated with electrically evoked muscle contraction.

Cite

CITATION STYLE

APA

Jacunski, M., & Rafferty, G. F. (2020). The effects of hypoxia and fatigue on skeletal muscle electromechanical delay. Experimental Physiology, 105(5), 842–851. https://doi.org/10.1113/EP088180

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free