Single photon lidar (SPL) is an innovative technology for rapid forest structure and terrain characterization over large areas. Here, we evaluate data from an SPL instrument - the High Resolution Quantum Lidar System (HRQLS) that was used to map the entirety of Garrett County in Maryland, USA (1700 km 2). We develop novel approaches to filter solar noise to enable the derivation of forest canopy structure and ground elevation from SPL point clouds. SPL attributes are compared with field measurements and an existing leaf-off, low-point density discrete return lidar dataset as a means of validation. We find that canopy and ground characteristics from SPL are similar to discrete return lidar despite differences in wavelength and acquisition periods but the higher point density of the SPL data provides more structural detail. Our experience suggests that automated noise removal may be challenging, particularly over high albedo surfaces and rigorous instrument calibration is required to reduce ground measurement biases to accepted mapping standards. Nonetheless, its efficiency of data collection, and its ability to produce fine-scale, three-dimensional structure over large areas quickly strongly suggests that SPL should be considered as an efficient and potentially cost-effective alternative to existing lidar systems for large area mapping.
CITATION STYLE
Swatantran, A., Tang, H., Barrett, T., Decola, P., & Dubayah, R. (2016). Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Scientific Reports, 6. https://doi.org/10.1038/srep28277
Mendeley helps you to discover research relevant for your work.