Integrating a low‐cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity

72Citations
Citations of this article
158Readers
Mendeley users who have this article in their library.

Abstract

Aroma is one of the main attributes that consumers consider when appreciating and se-lecting a coffee; hence it is considered an important quality trait. However, the most common methods to assess aroma are based on expensive equipment or human senses through sensory evalua-tion, which is time‐consuming and requires highly trained assessors to avoid subjectivity. Therefore, this study aimed to estimate the coffee intensity and aromas using a low‐cost and portable electronic nose (e‐nose) and machine learning modeling. For this purpose, triplicates of six commercial coffee samples with different intensity levels were used for this study. Two machine learning models were developed based on artificial neural networks using the data from the e‐nose as inputs to i) classify the samples into low, medium, and high‐intensity (Model 1) and ii) to predict the relative abundance of 45 different aromas (Model 2). Results showed that it is possible to estimate the intensity of coffees with high accuracy (98%; Model 1), as well as to predict the specific aromas obtaining a high correlation coefficient (R = 0.99), and no under‐ or over‐fitting of the models were detected. The proposed contactless, nondestructive, rapid, reliable, and low‐cost method showed to be effective in evaluating volatile compounds in coffee, which is a potential technique to be applied within all stages of the production process to detect any undesirable characteristics on–time and ensure high‐quality products.

Cite

CITATION STYLE

APA

Gonzalez Viejo, C., Tongson, E., & Fuentes, S. (2021). Integrating a low‐cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity. Sensors, 21(6), 1–16. https://doi.org/10.3390/s21062016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free