The visual cortex is vulnerable to changes in visual input, especially during the critical period when numerous molecules drive the refinement of the circuitry. From a list of potential actors identified in a recent proteomics study, we selected 2 collapsin response mediator proteins (CRMP2/CRMP4) and 2 synaptic proteins, Dynamin I (Dyn I) and Synaptotagmin I (Syt I), for in-depth analysis of their developmental expression profile in cat visual cortex. CRMP2 and CRMP4 levels were high early in life and clearly declined toward adulthood. In contrast, Dyn I expression levels progressively augmented during maturation. Syt I showed low levels at eye opening and in adults, high levels around the peak of the critical period, and maximal levels at juvenile age. We further determined a role for each molecule in ocular dominance plasticity. CRMP2 and Syt I levels decreased in area 17 upon monocular deprivation, whereas CRMP4 and Dyn I levels remained unaffected. In contrast, binocular removal of pattern vision had no influence on CRMP2 and Syt I expression in kitten area 17. This study illustrates that not the loss of quality of vision through visual deprivation, but disruption of normal binocular visual experience is crucial to induce the observed molecular changes.
CITATION STYLE
Cnops, L., Hu, T. T., Burnat, K., & Arckens, L. (2008). Influence of binocular competition on the expression profiles of CRMP2, CRMP4, Dyn i, and Syt i in developing cat visual cortex. Cerebral Cortex, 18(5), 1221–1231. https://doi.org/10.1093/cercor/bhm157
Mendeley helps you to discover research relevant for your work.