Effect of Sulfonation Level on Lignin/Carbon Composite Electrodes for Large-Scale Organic Batteries

23Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The key figure-of-merit for materials in stationary energy storage applications, such as large-scale energy storage for buildings and grids, is the cost per kilo per electrochemical cycle, rather than the energy density. In this regard, forest-based biopolymers such as lignin, are attractive, as they are abundant on Earth. Here, we explored lignin as an electroactive battery material, able to store two electrons per hydroquinone aromatic ring, with the targeted operation in aqueous electrolytes. The impact of the sulfonation level of lignin on the performance of its composite electrode with carbon was investigated by considering three lignin derivatives: lignosulfonate (LS), partially desulfonated lignosulfonate (DSLS), and fully desulfonated lignin (KL, lignin produced by the kraft process). Partial desulfonation helped in better stability of the composite in aqueous media, simultaneously favoring its water processability. In this way, a route to promote ionic conductivity within the lignin/carbon composite electrodes was developed, facilitating the access to the entire bulk of the volumetric electrodes. Electrochemical performance of DSLS/C showed highly dominant Faradaic contribution (66%) towards the total capacity, indicating an efficient mixed ionic-electronic transport within the lignin-carbon phase, displaying a capacity of 38 mAh/g at 0.25 A/g and 69% of capacity retention after 2200 cycles at a rate of 1 A/g.

Cite

CITATION STYLE

APA

Ail, U., Phopase, J., Nilsson, J., Khan, Z. U., Inganäs, O., Berggren, M., & Crispin, X. (2020). Effect of Sulfonation Level on Lignin/Carbon Composite Electrodes for Large-Scale Organic Batteries. ACS Sustainable Chemistry and Engineering, 8(49), 17933–17944. https://doi.org/10.1021/acssuschemeng.0c05397

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free