New type of Weyl semimetal with quadratic double Weyl fermions

301Citations
Citations of this article
263Readers
Mendeley users who have this article in their library.

Abstract

Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despitemuch effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. In this paper, we propose such a Weyl semimetal candidate in an inversionbreaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. We show that SrSi2 is a Weyl semimetal even without spin-orbit coupling and that, after the inclusion of spin-orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs.

Cite

CITATION STYLE

APA

Huang, S. M., Xuc, S. Y., Belopolski, I., Lee, C. C., Chang, G., Chang, T. R., … Hasan, M. Z. (2016). New type of Weyl semimetal with quadratic double Weyl fermions. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1180–1185. https://doi.org/10.1073/pnas.1514581113

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free