I will review the role of massive stars in galactic evolution both from the nucleosynthesis and energetics point of view. In particular, I will highlight some important observational facts explained by means of massive stars in galaxies of different morphological type: the Milky Way, ellipticals and dwarf spheroidals. I will describe first the time-delay model and its interpretation in terms of abundance ratios in galaxies, then I will discuss the importance of mass loss in massive stars to reproduce the data in the Galactic bulge and disk. I will discuss also how massive stars can be important producers of primary nitrogen if rotation in stellar models is taken into account. Concerning elliptical galaxies, I will show that to reproduce the observed [Mg/Fe] versus Mass relation in these galaxies it is necessary to assume a more important role of massive stars in more massive galaxies and that this can be achieved by means of downsizing in star formation. I will discuss how massive stars are responsible in triggering galactic winds both in ellipticals and dwarf spheroidals. These latter systems show a low overabundance of -elements relative to Fe with respect to Galactic stars of the same [Fe/H]: this is interpreted as due to a slow star formation coupled with very efficient galactic winds. Finally, I will show a comparison between the predicted Type Ib/c rates in galaxies and the observed GRB rate and how we can impose constraints on the mechanism of galaxy formation by studying the GRB rate at high redshift. © 2008 Copyright International Astronomical Union 2008.
CITATION STYLE
Matteucci, F. (2007). The role of massive stars in galactic chemical evolution. In Proceedings of the International Astronomical Union (Vol. 3, pp. 391–400). https://doi.org/10.1017/S1743921308020747
Mendeley helps you to discover research relevant for your work.