Intracellular supply of dTTP is a highly regulated process and has been a key target for chemotherapeutic drug development. Thymidylate kinase (TMPK) is the key enzyme for dTTP formation in both de novo and salvage pathways. In this study, we used lentiviral-based small hairpin RNA to silence TMPK expression in p53(+/+) and p53(-/-) HCT-116 colon cancer cells. This approach was sufficient to decrease the dTTP pool gradually without affecting p53 expression and generating cytotoxicity. TMPK knockdown significantly increased doxorubicin sensitivity dramatically in p53-proficient, p53-null HCT-116, and LoVo colon cancer cells. The decrease in the dTTP pool using this approach augmented the DNA damage response and enhanced apoptotic induction after exposure to low-dose doxorubicin, leading to cell death. In contrast, silencin g of thymidylate synthase which blocks the de novo pathway was incapable of sensitizing p53-null HCT-116 cells to doxorubicin-induced apoptosis because of the compensation by the salvage pathway. Our results suggest the lentiviral delivery of small hairpin RNA targeting TMPK in combination with a low dose of doxorubicin as a new approach to kill colon cancer cells regardless of p53 status. ©2008 American Association for Cancer Research.
CITATION STYLE
Hu, C. M., & Chang, Z. F. (2008). Synthetic lethality by lentiviral short hairpin RNA silencing of thymidylate kinase and doxorubicin in colon cancer cells regardless of the p53 status. Cancer Research, 68(8), 2831–2840. https://doi.org/10.1158/0008-5472.CAN-07-3069
Mendeley helps you to discover research relevant for your work.