Structure and surface area are critical factors for catalysts in fuel cells. Hence, a spinel nickel ferrite mesoporous (SNFM) is preparedviathe solution combustion technique, an efficient and one-step synthesis. Dynamic X-ray analysis has clarified the structural properties of SNFM. The grain size of SNFM is determined to be ∼11.6 nm. The specific surface area (87.69 m2. g−1) of SNFM is obtainedviathe Brunauer-Emmett-Teller method. The Barrett-Joyner-Halenda pore size distributions revealed that the size of the mesopores in as-synthesized SNFM mainly falls in the size range of 2-16 nm. Scanning electron microscopy studies showed the regularities involved during porous-structure formation. SNFM is employed as the support for nano-structured palladium (PdNS). Field emission scanning electron microscope studies of PdNS-SNFM showed the deposition of PdNS in cavities and on/in the pores of SNFM. The electrochemical surface area obtained for PdNS-SNFM is about 27 times larger than that of PdNSviacyclic voltammetry. The electrochemical studies are utilized to study the features and catalytic performance of PdNS-SNFM in the electro-oxidation of diverse small organic fuels, whereas the electrooxidation of diethylene glycol is reported for first-time.
CITATION STYLE
Kaedi, F., Yavari, Z., Abbasian, A. R., Asmaei, M., Kerman, K., & Noroozifar, M. (2021). Synergistic influence of mesoporous spinel nickel ferrite on the electrocatalytic activity of nano-structured palladium. RSC Advances, 11(20), 11813–11820. https://doi.org/10.1039/d0ra10944d
Mendeley helps you to discover research relevant for your work.