Ultrasound monitoring of tissue ablation via deformation model and shape priors

19Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A rapid approach to monitor ablative therapy through optimizing shape and elasticity parameters is introduced. Our motivating clinical application is targeting and intraoperative monitoring of hepatic tumor thermal ablation, but the method translates to the generic problem of encapsulated stiff masses (solid organs, tumors, ablated lesions, etc.) in ultrasound imaging. The approach involves the integration of the following components: a biomechanical computational model of the tissue, a correlation approach to estimate/track tissue deformation, and an optimization method to solve the inverse problem and recover the shape parameters in the volume of interest. Successful convergence and reliability studies were conducted on simulated data. Then ex-vivo studies were performed on 18 ex-vivo bovine liver samples previously ablated under ultrasound monitoring in controlled laboratory environment. While Bmode ultrasound does not clearly identify the development of necrotic lesions, the proposed technique can potentially segment the ablation zone. The same framework can also yield both partial and full elasticity reconstruction. © Springer-Verlag Berlin Heidelberg 2006.

Cite

CITATION STYLE

APA

Boctor, E., Deoliveira, M., Choti, M., Ghanem, R., Taylor, R., Hager, G., & Fichtinger, G. (2006). Ultrasound monitoring of tissue ablation via deformation model and shape priors. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4191 LNCS-II, pp. 405–412). Springer Verlag. https://doi.org/10.1007/11866763_50

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free