On-the-fly calibration of low-cost gas sensors

79Citations
Citations of this article
138Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Air quality monitoring is extremely important as air pollution has a direct impact on human health. Low-cost gas sensors are used to effectively perceive the environment by mounting them on top of mobile vehicles, for example, using a public transport network. Thus, these sensors are part of a mobile network and perform from time to time measurements in each others vicinity. In this paper, we study three calibration algorithms that exploit co-located sensor measurements to enhance sensor calibration and consequently the quality of the pollution measurements on-the-fly. Forward calibration, based on a traditional approach widely used in the literature, is used as performance benchmark for two novel algorithms: backward and instant calibration. We validate all three algorithms with real ozone pollution measurements carried out in an urban setting by comparing gas sensor output to high-quality measurements from analytical instruments. We find that both backward and instant calibration reduce the average measurement error by a factor of two compared to forward calibration. Furthermore, we unveil the arising difficulties if sensor calibration is not based on reliable reference measurements but on sensor readings of low-cost gas sensors which is inevitable in a mobile scenario with only a few reliable sensors. We propose a solution and evaluate its effect on the measurement accuracy in experiments and simulation. © 2012 Springer-Verlag.

Cite

CITATION STYLE

APA

Hasenfratz, D., Saukh, O., & Thiele, L. (2012). On-the-fly calibration of low-cost gas sensors. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7158 LNCS, pp. 228–244). https://doi.org/10.1007/978-3-642-28169-3_15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free