Optimization of precontrol methods and analysis of a dynamic model for brucellosis: Model development and validation

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background: Brucella is a gram-negative, nonmotile bacterium without a capsule. The infection scope of Brucella is wide. The major source of infection is mammals such as cattle, sheep, goats, pigs, and dogs. Currently, human beings do not transmit Brucella to each other. When humans eat Brucella-contaminated food or contact animals or animal secretions and excretions infected with Brucella, they may develop brucellosis. Although brucellosis does not originate in humans, its diagnosis and cure are very difficult; thus, it has a huge impact on humans. Even with the rapid development of medical science, brucellosis is still a major problem for Chinese people. Currently, the number of patients with brucellosis in China is 100,000 per year. In addition, due to the ongoing improvement in the living standards of Chinese people, the demand for meat products has gradually increased, and increased meat transactions have greatly promoted the spread of brucellosis. Therefore, many researchers are concerned with investigating the transmission of Brucella as well as the diagnosis and treatment of brucellosis. Mathematical models have become an important tool for the study of infectious diseases. Mathematical models can reflect the spread of infectious diseases and be used to study the effect of different inhibition methods on infectious diseases. The effect of control measures to obtain effective suppression can provide theoretical support for the suppression of infectious diseases. Therefore, it is the objective of this study to build a suitable mathematical model for brucellosis infection. Objective: We aimed to study the optimized precontrol methods of brucellosis using a dynamic threshold-based microcomputer model and to provide critical theoretical support for the prevention and control of brucellosis. Methods: By studying the transmission characteristics of Brucella and building a Brucella transmission model, the precontrol methods were designed and presented to the key populations (Brucella-susceptible populations). We investigated the utilization of protective tools by the key populations before and after precontrol methods. Results: An improvement in the amount of glove-wearing was evident and significant (P

Cite

CITATION STYLE

APA

Huang, Y., & Li, M. (2020). Optimization of precontrol methods and analysis of a dynamic model for brucellosis: Model development and validation. JMIR Medical Informatics, 8(5). https://doi.org/10.2196/18664

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free