The extrinsic coagulation pathway is activated when circulating factor VII (FVII) gains access to tissue factor (TF) exposed as a consequence of vascular injury. Increasing evidence indicates that this TF-dependent activation of the coagulation plays an important role in the pathophysiology of intravascular thrombus formation. In the present study, we tested the effects of recombinant human, active site-blocked activated FVII (FVIIai) in a rabbit model of carotid artery thrombosis. Cyclic flow variations (CFVs), due to recurrent thrombus formation, were obtained in stenotic rabbit carotid arteries with endothelial injury. Carotid blood flow velocity was measured by a Doppler flow probe. After 30 minutes of CFVs, the animals received FVIIai (100 μg · kg-1 · min-1 intracarotid infusion for 10 minutes, n=9). If CFVs were abolished, animals were followed for 30 additional minutes, after which recombinant human activated FVII (FVIIa) was infused into the carotid artery (100 μg · kg-1 · min-1 for 10 minutes) to determine whether FVIIai could be displaced from TF by FVIIa, thus restoring CFVs. To establish the duration of action of FVIIai, an additional group of animals received FVIIai at the same dose as above, and after CFVs were inhibited, they were followed until CFVs were restored or for up to 6 hours. To determine whether CFVs could be restored by epinephrine after their abolition with FVIIai, increasing doses of epinephrine were administered to a third group of 6 animals. FVIIai abolished CFVs in 8 of 9 rabbits (P
CITATION STYLE
Golino, P., Ragni, M., Cirillo, P., D’Andrea, D., Scognamiglio, A., Ravera, A., … Chiariello, M. (1998). Antithrombotic effects of recombinant human, active site-blocked factor VIIa in a rabbit model of recurrent arterial thrombosis. Circulation Research, 82(1), 39–46. https://doi.org/10.1161/01.RES.82.1.39
Mendeley helps you to discover research relevant for your work.