Decision-making process in manufacturing environment is increasingly difficult due to the rapid changes in design anddemand of quality products. To make decision making process online, effective and efficient artificial intelligent tools likeneural networks are being attempted. This paper proposes the development of neural network models for prediction ofweld quality in Submerged Arc Welding (SAW). Experiments are designed according to Taguchi’s principles andmathematical equations are developed using multiple regression model. Proposed neural network models are developedusing experimental data, supported with the data generated by regression model. The performances of the developedmodels are compared in terms of computational speed and prediction accuracy. It is found that Neural Network trainedwith Particle Swarm Optimization (NNPSO) performs better than Neural Network trained with Back Propagation (BPNN)algorithm, Radial Basis Functional Neural Network (RBFNN) and Neural Network trained with Genetic Algorithm(NNGA). The developed scheme for weld quality prediction is flexible, competent, and accurate than existing models andit scopes better online monitoring system. Finally the developed models are validated. The proposed and developedtechnique finds a good scope and a better future in the relevant field where human can avoid unwanted risks duringoperations with the deployment of robots.
CITATION STYLE
Dhas, E. R., Kumanan, S., & Jesuthanam, C. P. (2012). Prediction of weld quality using intelligent decision making tools. Artificial Intelligence Research, 1(2), 131. https://doi.org/10.5430/air.v1n2p131
Mendeley helps you to discover research relevant for your work.