In this study, a nocturnal extreme rainfall event induced by the urban heat island (UHI) effects of the coastal city of Guangzhou in South China on 7 May 2017 is examined using observational analyses and 18-h cloud-permitting simulations with the finest grid size of 1.33 km and the bottom boundary conditions nudged. Results show that the model reproduces convective initiation on Guangzhou's downstream side (i.e., Huashan), where a shallow thermal mesolow is located, the subsequent back-building of convective cells as a larger-scale warm-moist southerly flow interacts with convectively generated cold outflows, and their eastward drifting and reorganization into a localized extreme-rain-producing storm near Jiulong under the influences of local orography. In particular, the model produces the maximum hourly, 3- and 12-hourly rainfall amounts of 146, 315, and 551 mm, respectively, at nearly the right location compared to their corresponding observed extreme amounts of 184, 382, and 542 mm. In addition, the model reproduces an intense meso-g-scale vortex associated with the extreme-rain-producing Jiulong storm, as also captured by Doppler radar, with organized updrafts along cold outflow boundaries over a semicircle. A comparison of sensitivity and control simulations indicates that despite the occurrence of heavier rainfall amounts without the UHI effects than those without orography, the UHI effects appear to account directly for the convective initiation and heavy rainfall near Huashan, and indirectly for the subsequent formation of the Jiulong storm, while orography plays an important role in blocking cold outflows and enhancing cool pool strength for the sustained back-building of convective cells over the semicircle, thereby magnifying rainfall production near Jiulong.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Yin, J., Zhang, D. L., Luo, Y., & Ma, R. (2020). On the extreme rainfall event of 7 May 2017 over the Coastal City of Guangzhou. Part I: Impacts of urbanization and orography. Monthly Weather Review, 148(3), 955–979. https://doi.org/10.1175/MWR-D-19-0212.1