Granulated blast furnace slag (GGBFS) is a potential resource of rare earth elements (REEs), and due to the complex mineralogy, extraction by conventional hydrometallurgical process makes it an acid-consuming method. Bioleaching is thus investigated using a chemo-organotrophic bac-terium Gluconobacter oxydans (DSMZ 46616) for REE extraction from GGBFS containing 157 ppm Ce, 90 ppm La, 71 ppm Nd and 40 ppm Er, hosted in a Ca-Al-Si matrix. The gluconic acid generation by G. oxydans was assessed for its role in REE extraction from GGBFS. With 5% (w/v) GGBFS using a mixture of a non-adapted and a GGBFS-adapted culture, a maximum solubilization of 67% and 88% Nd was observed after 12 and 40 days of incubation, respectively. The total amount of gluconic acid excreted by the bacteria increased with leaching duration, which contributed to a rise in metal extraction. Scanning electron microscope-energy dispersive analysis (SEM-EDAX) analysis of the solid residue showed bacterial cells in corrosion pits, and thereby assisting in metal solubilization.
CITATION STYLE
Abhilash, Hedrich, S., Meshram, P., Schippers, A., Gupta, A., & Sen, S. (2022). Extraction of REEs from Blast Furnace Slag by Gluconobacter oxydans. Minerals, 12(6). https://doi.org/10.3390/min12060701
Mendeley helps you to discover research relevant for your work.