Dataset-driven research for improving recommender systems for learning

Citations of this article
Mendeley users who have this article in their library.
Get full text


In the world of recommender systems, it is a common practice to use public available datasets from different application environments (e.g. MovieLens, Book-Crossing, or Each- Movie) in order to evaluate recommendation algorithms. These datasets are used as benchmarks to develop new recommendation algorithms and to compare them to other algorithms in given settings. In this paper, we explore datasets that capture learner interactions with tools and resources. We use the datasets to evaluate and compare the performance of different recommendation algorithms for learning. We present an experimental comparison of the accuracy of several collaborative filtering algorithms applied to these TEL datasets and elaborate on implicit relevance data, such as downloads and tags, that can be used to improve the performance of recommendation algorithms. © 2011 ACM.




Verbert, K., Drachsler, H., Manouselis, N., Wolpers, M., Vuorikari, R., & Duval, E. (2011). Dataset-driven research for improving recommender systems for learning. In ACM International Conference Proceeding Series (pp. 44–53).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free