Microemulsions are nanocolloidal systems composed of water, an oil, and a surfactant, sometimes with an additional co-surfactant, which have found a wide range of practical applications, including the extractive removal of contaminants from polluted water. In this study, microemulsion systems, including a nonionic surfactant (Brij 30), water, and esters selected from two homologous series of C1–C6 alkyl acetates and ethyl C1–C4 carboxylates, respectively, were prepared by the surfactant titration method. Phase transitions leading to the formation of Winsor II and Winsor IV microemulsions were observed and phase diagrams were constructed. The dependences of phase transitions on the salinity and pH and the addition of isopropanol as a co-surfactant were also investigated. Some physical properties, namely density, refractive index, electrical conductivity, dynamic viscosity, and particle size, were measured for a selection of Winsor IV microemulsions, providing further insight into some other phase transitions occurring in the monophasic domains of phase diagrams. Finally, Winsor II microemulsions were tested as extraction solvents for the removal of four tricyclic antidepressant drugs from aqueous media. Propyl acetate/Brij 30/H2O microemulsions provided the best extraction yields (>90%), the highest Nernst distribution coefficients (~40–88), and a large volumetric ratio of almost 3 between the recovered purified water and the resulting microemulsion extract. Increasing the ionic strength (salinity) or the pH of the aqueous antidepressant solutions led to an improvement in extraction efficiencies, approaching 100%. These results could be extrapolated to other classes of pharmaceutical contaminants and suggest ester- and nonionic surfactant-based microemulsions are a promising tool for environmental remediation.
CITATION STYLE
Racovita, R. C., Ciuca, M. D., Catana, D., Comanescu, C., & Ciocirlan, O. (2023). Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media. Nanomaterials, 13(16). https://doi.org/10.3390/nano13162311
Mendeley helps you to discover research relevant for your work.