Anytime heuristic search

213Citations
Citations of this article
108Readers
Mendeley users who have this article in their library.

Abstract

We describe how to convert the heuristic search algorithm A* into an anytime algorithm that finds a sequence of improved solutions and eventually converges to an optimal solution. The approach we adopt uses weighted heuristic search to find an approximate solution quickly, and then continues the weighted search to find improved solutions as well as to improve a bound on the suboptimality of the current solution. When the time available to solve a search problem is limited or uncertain, this creates an anytime heuristic search algorithm that allows a flexible tradeoff between search time and solution quality. We analyze the properties of the resulting Anytime A* algorithm, and consider its performance in three domains; sliding-tile puzzles, STRIPS planning, and multiple sequence alignment. To illustrate the generality of this approach, we also describe how to transform the memory-efficient search algorithm Recursive Best-First Search (RBFS) into an anytime algorithm. © 2007 AI Access Foundation. All rights reserved.

Cite

CITATION STYLE

APA

Hansen, E. A., & Zhou, R. (2007). Anytime heuristic search. Journal of Artificial Intelligence Research, 28, 267–297. https://doi.org/10.1613/jair.2096

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free