Conditional excess risk measures like Marginal Expected Shortfall and Marginal Mean Excess are designed to aid in quantifying systemic risk or risk contagion in a multivariate setting. In the context of insurance, social networks, and telecommunication, risk factors often tend to be heavy-tailed and thus frequently studied under the paradigm of regular variation. We show that regular variation on different subspaces of the Euclidean space leads to these risk measures exhibiting distinct asymptotic behavior. Furthermore, we elicit connections between regular variation on these subspaces and the behavior of tail copula parameters extending previous work and providing a broad framework for studying such risk measures under multivariate regular variation. We use a variety of examples to exhibit where such computations are practically applicable.
CITATION STYLE
Das, B., & Fasen-Hartmann, V. (2019). Conditional excess risk measures and multivariate regular variation. Statistics and Risk Modeling. https://doi.org/10.1515/strm-2018-0030
Mendeley helps you to discover research relevant for your work.