Increased double strand breaks in diabetic β-cells with a p21 response that limits apoptosis

21Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

DNA damage and DNA damage response (DDR) pathways in β-cells have received little attention especially in the context of type-2 diabetes. We postulate that p21 plays a key role in DDR by preventing apoptosis, associated through its overexpression triggered by DNA stand breaks (DSBs). Our results show that β-cells from chronic diabetic mice had a greater extent of DSBs as compared to their non-diabetic counterparts. Comet assays and nuclear presence of γH2AX and 53bp1 revealed increased DNA DSBs in 16 weeks old (wo) db/db β-cells as compared to age matched non-diabetic β-cells. Our study of gene expression changes in MIN6 cell line with doxorubicin (Dox) induced DNA damage, showed that the DDR was similar to primary β-cells from diabetic mice. There was significant overexpression of DDR genes, gadd45a and p21 after a 24-hr treatment. Western blot analysis revealed increased cleaved caspase3 over time, suggesting higher frequency of apoptosis due to Dox-induced DNA strand breaks. Inhibition of p21 by pharmacological inhibitor UC2288 under DNA damage conditions (both in Dox-induced MIN6 cells and older db/db islets) significantly increased the incidence of β-cell apoptosis. Our studies confirmed that while DNA damage, specifically DSBs, induced p21 overexpression in β-cells and triggered the p53/p21 cellular response, p21 inhibition exacerbated the frequency of apoptosis.

Cite

CITATION STYLE

APA

Tay, V. S. Y., Devaraj, S., Koh, T., Ke, G., Crasta, K. C., & Ali, Y. (2019). Increased double strand breaks in diabetic β-cells with a p21 response that limits apoptosis. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54554-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free