Recently, the addition of copper nanoparticles (NPs) in a daily diet (6.5 mg/kg) was studied in different animal models as a possible alternative to ionic forms. Male Wistar–Kyoto rats (24-week-old, n = 11) were fed with copper, either in the form of carbonate salt (Cu6.5 ) or metal-based copper NPs (NP6.5 ), for 8 weeks. The third group was fed with a half dose of each (NP3.25 + Cu3.25 ). The thoracic aorta and blood plasma was studied. Supplementation with NP6.5 decreased the Cu (×0.7), Cu/Zn-ratio (×0.6) and catalase (CAT, ×0.7), and increased Zn (×1.2) and superoxide dismutase (SOD, ×1.4). Meanwhile, NP3.25 + Cu3.25 decreased the Cu/Zn-ratio (×0.7), and CAT (×0.7), and increased the daily feed intake (×1.06). Preincubation with either the selective cyclooxygenase (COX)-2 inhibitor, or the non-selective COX-1/2 inhibitor attenuated vasodilation of rat thoracic aorta in the NP6.5 group exclusively. However, an increased vasodilator response was observed in the NP6.5 and NP3.25 + Cu3.25 group of rats after preincubation with an inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation, and the thromboxane receptor (TP) antagonist. Significant differences were observed between the NP6.5 and NP3.25 + Cu3.25 groups of rats in: dietary intake, acetylcholine-induced vasodilation, and response to COX-inhibitors. Copper NPs in a standard daily dose had more significant effects on the mechanism(s) responsible for the utilization of reactive oxygen species in the blood plasma with the participation of prostanoids derived from COX-2 in the vascular relaxation. Dietary copper NPs in both doses modified vasodilation through the vasoconstrictor 20-HETE and the TP receptors.
CITATION STYLE
Majewski, M., Juśkiewicz, J., Krajewska-Włodarczyk, M., Gromadziński, L., Socha, K., Cholewińska, E., & Ognik, K. (2021). The role of 20-hete, cox, thromboxane receptors, and blood plasma antioxidant status in vascular relaxation of copper-nanoparticle-fed wky rats. Nutrients, 13(11). https://doi.org/10.3390/nu13113793
Mendeley helps you to discover research relevant for your work.