Prediction of epidemic peak and infected cases for COVID-19 disease in Malaysia, 2020

64Citations
Citations of this article
225Readers
Mendeley users who have this article in their library.

Abstract

The coronavirus COVID-19 has recently started to spread rapidly in Malaysia. The number of total infected cases has increased to 3662 on 05 April 2020, leading to the country being placed under lockdown. As the main public concern is whether the current situation will continue for the next few months, this study aims to predict the epidemic peak using the Susceptible–Exposed–Infectious–Recovered (SEIR) model, with incorporation of the mortality cases. The infection rate was estimated using the Genetic Algorithm (GA), while the Adaptive Neuro-Fuzzy Inference System (ANFIS) model was used to provide short-time forecasting of the number of infected cases. The results show that the estimated infection rate is 0.228 ± 0.013, while the basic reproductive number is 2.28 ± 0.13. The epidemic peak of COVID-19 in Malaysia could be reached on 26 July 2020, with an uncertain period of 30 days (12 July–11 August). Possible interventions by the government to reduce the infection rate by 25% over two or three months would delay the epidemic peak by 30 and 46 days, respectively. The forecasting results using the ANFIS model show a low Normalized Root Mean Square Error (NRMSE) of 0.041; a low Mean Absolute Percentage Error (MAPE) of 2.45%; and a high coefficient of determination (R2) of 0.9964. The results also show that an intervention has a great effect on delaying the epidemic peak and a longer intervention period would reduce the epidemic size at the peak. The study provides important information for public health providers and the government to control the COVID-19 epidemic.

Cite

CITATION STYLE

APA

Alsayed, A., Sadir, H., Kamil, R., & Sari, H. (2020). Prediction of epidemic peak and infected cases for COVID-19 disease in Malaysia, 2020. International Journal of Environmental Research and Public Health, 17(11), 1–15. https://doi.org/10.3390/ijerph17114076

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free